Tài liệu tham khảo |
Loại |
Chi tiết |
[3] Ahmed I. Zayed, A Convolution and Product Theorem for the Frac- tional Fourier Transform, IFEE Signal, Processing Letters, Vol.5, No4, 1998, 101-103 |
Sách, tạp chí |
Tiêu đề: |
A Convolution and Product Theorem for the Fractional Fourier Transform |
Tác giả: |
Ahmed I. Zayed |
Nhà XB: |
IFEE Signal Processing Letters |
Năm: |
1998 |
|
[4] E.C. Titchmarsh, Introduction to the e Clarendtheory of Fourer inte- grals, New York, 1986 |
Sách, tạp chí |
Tiêu đề: |
Introduction to the theory of Fourier integrals |
Tác giả: |
E.C. Titchmarsh |
Nhà XB: |
New York |
Năm: |
1986 |
|
[5] Fan Hong-Yi, Hao Ren and Lu Hai-lang, Convolution Theorem of Fractional Fourier Transformation Derived by Representation Trans- formation in Quantum Mechancis, Commun.Theor.Phys.(Beijing, China), 50(2008),pp.611-614 |
Sách, tạp chí |
Tiêu đề: |
Convolution Theorem of Fractional Fourier Transformation Derived by Representation Trans- formation in Quantum Mechancis |
Tác giả: |
Fan Hong-Yi, Hao Ren, Lu Hai-lang |
Nhà XB: |
Commun.Theor.Phys.(Beijing, China) |
Năm: |
2008 |
|
[8] Luis B. Almeida, Product and Convolution Theorems for the Frac- tional Fourier Transform, IFEE Signal, Processing Letters, Vol.4, No1, 1997,15-17 |
Sách, tạp chí |
Tiêu đề: |
Product and Convolution Theorems for the Frac- tional Fourier Transform |
Tác giả: |
Luis B. Almeida |
Nhà XB: |
IFEE Signal Processing Letters |
Năm: |
1997 |
|
[9] Luis Guillermo Romero, Ruben Alejandro Cansform and cerutti and Luciano Leonardo Luque, A new fractional Fourier transform and con- volution products, International Journal of Pure and Applied Math- matics, Vol. 66, No4, 2011, 397-408 |
Sách, tạp chí |
Tiêu đề: |
A new fractional Fourier transform and convolution products |
Tác giả: |
Luis Guillermo Romero, Ruben Alejandro Cansform, Cerutti, Luciano Leonardo Luque |
Nhà XB: |
International Journal of Pure and Applied Mathematics |
Năm: |
2011 |
|
[11] Pei-Soo-Chang Jian-Jiun Ding, Fractional cosine , sine and Hartley transform, IEEE, Trans.on Signal Processing, Vol. 50, No7, July 2002 |
Sách, tạp chí |
Tiêu đề: |
Fractional cosine , sine and Hartley transform |
Tác giả: |
Pei-Soo-Chang, Jian-Jiun Ding |
Nhà XB: |
IEEE |
Năm: |
2002 |
|
[12] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Pub., New York-London (1993) |
Sách, tạp chí |
Tiêu đề: |
Fractional Integrals and Derivatives: Theory and Applications |
Tác giả: |
S.G. Samko, A.A. Kilbas, O.I. Marichev |
Nhà XB: |
Gordon and Breach Science Pub. |
Năm: |
1993 |
|
[13] V.Naminas, The fractional order Fourier transform and its application in quanturm mechanics,J. Inst. Math. Appl., 25: 241-265, 1980 |
Sách, tạp chí |
Tiêu đề: |
The fractional order Fourier transform and its application in quanturm mechanics |
Tác giả: |
V. Naminas |
Nhà XB: |
J. Inst. Math. Appl. |
Năm: |
1980 |
|
[14] Y. Luchko, H. Martinez, J. Trujillo, Fractional Fourier transform and some of its applications, Fractional Calculus and Applied Analysis, International Journal for Theory and Applications, 11, No 4 (2008) |
Sách, tạp chí |
Tiêu đề: |
Fractional Fourier transform and some of its applications |
Tác giả: |
Y. Luchko, H. Martinez, J. Trujillo |
Nhà XB: |
Fractional Calculus and Applied Analysis |
Năm: |
2008 |
|
[1] A. Bultheel and H. Matinez, An introduction to the fractional Fourier transform and friends, Preprint, February, 2004 |
Khác |
|
[2] A.C. McBride and F. H. Kerr, On Naminas’s fractional Fourier trans- forms,IMA J. Appl. Math., 39: 159-175, 1987 |
Khác |
|
[6] H.M. Ozaktas, Z. Zalevsky and M.A. Kutay, The fractional Fourier transform, Wiley, Chichester, 2001 |
Khác |
|
[7] I.M. Gelfand and G.E.Shilov, Generalized Functions, Vol 2: Spaces of Fundamental and Generalized Functions, Academic Press, New York and London (1968) |
Khác |
|
[10] P. K. Sontakke and A.S. Guidadhe, Convolution and Rayleigh’s Theo- rem for generalized fractional Hartley transform, European journal of pure and applied mathematics, 20, No 1, 2009, 162-170 |
Khác |
|