THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 50 |
Dung lượng | 1,62 MB |
Nội dung
Ngày đăng: 28/01/2021, 22:01
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
[3] P. Goatin and P.G. LeFloch, The Riemann problem for a class of res- onant nonlinear systems of balance laws, Ann. Inst. H. Poincaré Anal.NonLinéaire, 21 (2004) 881–902 | Sách, tạp chí |
|
||||||||
[4] J.M. Gallardo, C. Parés, and M. Castro, On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys. 227 (2007), 574-601 | Sách, tạp chí |
|
||||||||
[7] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconser- vative form, Institute for Math. and its Appl., Minneapolis, Preprint# 593, 1989 (unpublished) | Sách, tạp chí |
|
||||||||
[11] D. Marchesin and P.J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation. Hyperbolic partial differential equations III, Comput.Math. Appl. (Part A), 12 (1986) 433–455 | Sách, tạp chí |
|
||||||||
[12] G. Rosatti, L. Begnudelli, The Riemann Problem for the one-dimensional, free-surface Shallow Water Equations with a bed step: theoretical analysis and numerical simulations, J. Comput. Phys., 229 (2010), 760-787 | Sách, tạp chí |
|
||||||||
[13] D.W. Schwendeman, C.W. Wahle, and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two- phase flow, J. Comput. Phys., 212 (2006), 490–526 | Sách, tạp chí |
|
||||||||
[14] M.D. Thanh, Md. Fazlul K., and A. Izani Md. Ismail, Well-balanced scheme for shallow water equations with arbitrary topography, Inter. J. Dyn. Sys.and Diff. Eqs., 1 (2008) 196–204 | Sách, tạp chí |
|
||||||||
[1] N. Andrianov and G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., 64 (2004) 878–901 | Khác | |||||||||
[2] G. Dal Maso, P.G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), 483–548 | Khác | |||||||||
[5] E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math., 52 (1992) 1260–1278 | Khác | |||||||||
[6] E. Isaacson and B. Temple, Convergence of the 2 × 2 godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995) 625–640 | Khác | |||||||||
[8] P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Comm. Math. Sci., 1 (2003) 763–797 | Khác | |||||||||
[9] P.G. LeFloch and M.D. Thanh, The Riemann problem for shallow water equations with discontinuous topography, Comm. Math. Sci., 5(2007) 865–885 | Khác | |||||||||
[10] P.G. LeFloch and M.D. Thanh, A Godunov-type method for the shallow water equations with variable topography in the resonant regime, J. Com- put. Phys., 230 (2011) 7631-7660 | Khác |
HÌNH ẢNH LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN