THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 34 |
Dung lượng | 339,92 KB |
Nội dung
Ngày đăng: 08/08/2014, 14:23
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
[3] L. Carlitz, J. Riordan, Two element lattice permutation numbers and their q- generalization, Duke Math. J. 31 1964 371–388 | Sách, tạp chí |
|
||||||||
[8] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006 | Sách, tạp chí |
|
||||||||
[10] M. Haiman, Commutative algebra of n points in the plane, With an appendix by Ezra Miller. Math. Sci. Res. Inst. Publ., 51, Trends in commutative algebra, 153–180, Cambridge Univ. Press, Cambridge, 2004 | Sách, tạp chí |
|
||||||||
[11] D. Grayson, M. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/ | Link | |||||||||
[1] N. Bergeron, Z. Chen, Basis of diagonally alternating harmonic polynomials for low degree, Journal of Combinatorial Theory, Series A Volume 118, Issue 1, January 2011, Pages 37-57 | Khác | |||||||||
[4] A. M. Garsia, J. Haglund, A positivity result in the theory of Macdonald polynomials, Proc. Natl. Acad. Sci. USA 98 (2001), no. 8, 4313–4316 (electronic) | Khác | |||||||||
[5] A. M. Garsia, J. Haglund, A proof of the q, t-Catalan positivity conjecture. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC). Discrete Math. 256 (2002), no. 3, 677–717 | Khác | |||||||||
[6] A. M. Garsia, M. Haiman, A Remarkable q, t-Catalan sequence and q-Lagrange in- version, J. Algebraic Combin. 5 (1996), 191–244 | Khác | |||||||||
[7] J. Haglund, The q, t-Catalan numbers and the space of diagonal harmonics, with an appendix on the combinatorics of Macdonald polynomials, University Lecture Series, 41. American Mathematical Society, Providence, RI, 2008 | Khác | |||||||||
[9] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407 | Khác | |||||||||
[12] N. Loehr, G. Warrington, A continuous family of partition statistics equidistributed with length, J. Combin. Theory Ser. A 116 (2009), no. 2, 379–403 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN