2019 Tai n[.]
Trang 5 1
2
3
4
5
7
1.1. 7
1.2. 9
1.3. 9
1.4. 9
1.5. 10
11
2.1. 11
2.2.1 11
2.2.2 11
2.2.3 12
2.2.4 13
2.3. - 15
2.3.1 15
2.3.2 16
2.3.3 19
2.3.4 20
25
3.1. 25
3.2. 26
3.3. 28
3.4. 30
3.4.1 30
3.4.2 31
Trang 63.5. - 33
3.5.1 33
3.5.2 39
3.5.3 41
3.5.4 -ron 45
3.5.5 -ron 47
52
4.1. 52
4.2. 52
4.3. 54
4.4.
55
4.4.1 55
4.4.2 56
4.4.3 - 57
4.5. 58
61
5.1. 61
5.2. 61
62
Trang 7FPG Fact Precedence Graph
UCI Center for Machine Learning
and Intelligent Systems at the University of California, Irvine
lifornia, Irvine HbA1c Glycated hemoglobin
glucose
Trang 84
13
18
29
31
32
32
33
34
35
35
36
38
40
-ron 42
overfitting sau cùng 4000 chu kì epoch 51
53
- 54
- 55 56
58
Trang 95
Hình 1: 11
Fact Precedence Graph (FPG) 14
-ron 16
- 19
- 20
21
22
23
-ron 23
Hình 10: 25
- 27
30
40
- 41
- 42
44
44
-ron 45
- 46
47 - 48
dropout sau 500 chu kì epoch 49
L2 regularization sau 500 chu kì epoch 50
51
Trang 106
- 52
53
Blood Pressure và Skin Thickness 57
59
H 60
60
Trang 13 4.77% Trong mô hình
g -ron
nh -ron
Trang 1511
: 2.1 H
Trang 1612
con
Trang 17Mã lut u ki n K t lun tin c y (F)
Biu di n:
N u (s ki n( n( ) ^ s ki n( )) thì ((s ki n( )) (y%)
Fact Precedence Graph (FPG), là
th th hi n m i liên quan gi a s ki n này v i s ki n khác
Trang 2420
ron
Trang 27Hình 9 Công th c tính output cho 1 node trong m ng -: ron
Vi gii thu t lan truy c s d ng là hàm Sigmoid
Gradient Descent
ng s t i thi u c a hàm l i T ng giá tr l c tính theo công thc:
Trang 2824
g s b ng vi o hàm c a E trên t ng tr ng s
V i m ng - ron o hàm c a E trên tr ng s sau:
w5 = w5 5
Trang 30
uá trìn -ron
Trang 33Blood Pressure Number 0
Skin Thickness Number 0
Trang 3531
trong :
,
v kho ng [0,1] b MinMaxScaling theo công thc sau:
Trang 37 cacbohydrat, và protein khi hoóc môn insulin
luôn cao; trong
Trang 400
SK10
Diabetes Pedigree Function
90mm
Skin Thickness 2
Trang 4137
SK16 Skin Thickness 4 SK17
Trang 46Final Conclusions Output UnitsSupporting Facts Input Units Intermediate Conclusions Hidden Units Dependencies Weighted Connections
Trang 47 trung gian - Intermediate Conclusions
Trang 4945
-roncho các node và các node khác
-ron
sau:
Hình 18: Xây -ron3.5.4 -ron
và
-ron
Trang 50
(Rectified linear unit):
Hàm truy gin a l p n vào lu ra là hàm Sigmoid:
Trang 55Early stopping + L2 regularization 86.36%
Early stopping + L2 regularization + Dropout 81.81%
Trang 56 [5] K c
Máy Dell E6440
CPU Core i7 - 4600M 2 core 4 thread
GPU AMD Radeon HD 8690M
Hình 25-ron
Trang 5955
18 -ron
Probabilistic neural network (PNN) [16] 81.49%
Small-world neural network (SW-FFANN)[17] 93.06%
Trang 614.4.3 -ron
là Skin Thickness và Blood Pressure , Sau
Trang 65-
Trang 66[3] Y Chen, J Elenee Argent
Cognitive Computing Can Be Applied to Big Data Challenges in Life
Clinical Therapeutics, vol 38, no 4, pp 688 701, Apr 2016
[4] Q K Al-
International Journal of Computer Science Issues, vol 8, no 2, p 6, 2011
[5] -indians-
[6]
[7] Phan Huy Khánh, Giáo Trình Hệ Chuyên Gia 2004
[8] K Gurney, An Introduction to Neural Networks University of Sheffield, 1997
[9]
Engineering Research, 2015, vol 5
[14] -based artificial neural
Artificial Intelligence, vol 70, no 12, pp 119165, Oct 1994
[15] N Srivastava, G Hinton, A Krizhevsky, I Sutskever, and R
Salak
Trang 67[18] -layer Feed Forward
Neural Network Approach for D 2018 11th
International Conference on Developments in eSystems Engineering
of Diabetes Using Ar Engineering
Vibration, Communication and Information Processing, vol 478, K Ray, S
N Sharan, S Rawat, S K Jain, S Srivastava, and A Bandyopadhyay, Eds Singapore: The International Conference On Engineering Vibration Communication and Information Processing, 2018, pp 679 687
[23]
Circuits, System and Simulation, 2011
[24] -Based Artificial Neural Network
Department of Electrical Engineering and Computer Science, p 7, 2008
[25] B Strack et al. of HbA1c Measurement on Hospital Readmission
BioMed research international, 2014, vol 2014
Trang 68D Peter, S L Fernandes, C Eduardo Thomaz, and S Viriri, Eds Cham: Springer International Publishing, 2019, pp 179 187
[30] C C Geddes, J G Fox, M E Allison, J M Boulton-Jones, and K
Simpdeveloping progressive IgA nephropathy more accurately than
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association -
[31]
[32] A G Karegowda, A S Manjunath, and M A Jayaram, Application of
Genetic Algorithm Optimized Neural Network Connection Weights for Medical Diagnosis of Pima Indians Diabetes 2011
[33]
Predicting Early Diabetes Patient Hospital Readmittance to Help Optimize
Leland Stanford Junior University, Dec 2017
[34] -Day Hospital
International Journal of Advanced Computer Science and Applications,
vol 10, no 2, 2019
Trang 6965
[35]
Expert Systems with
Ojha, Eds Singapore: Springer Singapore, 2019, pp 1123
[38] ary correlated gravitational
search algorithm (ECGS) with genetic optimized Hopfield neural network (GHNN)
[39] J S Majeed Alneamy, Z A Hameed Alnaish, S Z Mohd Hashim, and R
networks with a teaching learning-based optimization algorithm for
Computers in Biology and Medicine, vol 112,
p 103348, Sep 2019