1. Trang chủ
  2. » Luận Văn - Báo Cáo

PHÂN DẠNG ĐỀ THI ĐẠI HỌC

94 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 94
Dung lượng 447,14 KB

Nội dung

PHÂN DẠNG ĐỀ THI ĐẠI HỌC

HỒNG NGỌC THẾ PHÂN DẠNG ĐỀ THI ĐẠI HỌC MƠN TOÁN (2002 - 2015) PHÂN DẠNG ĐỀ THI ĐẠI HỌC MƠN TỐN Từ năm 2002 đến năm 2015 Hồng Ngọc Thế Ngày 20 tháng năm 2015 Lời nói đầu Tài liệu nhỏ giới thiệu Đề thi ĐH mơn tốn từ năm 2002 (năm tồn quốc thi đề chung) đến năm 2015 Các đề thi phân dạng xếp theo chủ đề lớn: Khảo sát hàm số Lượng giác Phương trình, hệ phương trình, bất phương trình Tích phân ứng dụng Hình học tổng hợp khơng gian Bất đẳng thức Phương pháp tọa độ không gian Phương pháp tọa độ mặt phẳng Số phức 10 Tổ hợp - xác suất Ở chủ đề, đề xếp theo năm thi có đáp án hướng dẫn kèm giúp bạn đọc dễ theo dõi kiểm tra kết Bạn đọc nên tự làm đề thi sau so sánh với đáp án Để làm đề thi này, đòi hỏi bạn đọc cần có q trình ơn tập kiên trì có hiệu Trong q trình tổng hợp vội vàng, có nhiều thiếu sót Rất mong nhận đóng góp bạn Hồng Ngọc Thế Khảo sát hàm số (A-2002) Cho hàm số y = −x3 + 3mx2 + 3(1 − m2 )x + m3 − m2 (1) a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm k để phương trình: −x3 + 3x2 + k − 3k = có nghiệm phân biệt c) Viết phương trình đường thẳng qua điểm cực trị hàm số (1) ĐA: b) − < k < 3, k 6= 0; k 6= 2; c)y = 2x − m2 + m (B-2002) Cho hàm số y = mx4 + (m2 − 9)x2 + 10 (2) a) Khảo sát biến thiên vẽ đồ thị hàm số (2) m = b) Tìm m để hàm số (2) có ba cực trị ĐA: < m < 3; m < −3 (D-2002) Cho hàm số y= (2m − 1)x − m2 x−1 (3) a) Khảo sát biến thiên vẽ đồ thị (C) hàm số (3) m = −1 b) Tính diện tích giới hạn đồ thị (C) trục toạ độ c) Tìm điều kiện tham số m đề đồ thị hàm số (3) tiếp xúc với đường thẳng y = x ĐA: b)S = ln − 1; c)m 6= (A-2003) Cho hàm số y= mx2 + x + m x−1 (4) a) Khảo sát biến thiên vẽ đồ thị hàm số (4) m = −1 b) Tìm điều kiện tham số m để đồ thị hàm số (4) cắt Ox hai điểm phân biệt có hồnh độ dương ĐA: − < m < (B-2003) Cho hàm số y = x3 − 3x2 + m (5) a) Khảo sát biến thiên vẽ đồ thị hàm số (5) m = b) Tìm điều kiện tham số m để đồ thị hàm số (5) có hai điểm phân biệt đối xứng qua gốc toạ độ ĐA: m > (B-2003) Tìm giá trị lớn nhất, giá trị nhỏ hàm số p y = x + − x2 √ ĐA: max y = 2; y = −2 (D-2003) Cho hàm số y= x2 − 2x + x−2 (6) a) Khảo sát biến thiên vẽ đồ thị hàm số (6) b) Tìm điều kiện tham số m để đồ thị hàm số (6) đường thẳng dm : y = mx + − 2m cắt hai điểm phân biệt ĐA: m > (D-2003) Tìm giá trị lớn nhất, giá trị nhỏ hàm số x+1 y=√ x2 + [−1; 2] ĐA: max y = [−1;2] √ 2; y = [−1;2] (A-2004) Cho hàm số y= −x2 + 3x − 2(x − 1) (7) a) Khảo sát biến thiên vẽ đồ thị hàm số (7) b) Tìm m để đồ thị hàm số (7) đường thẳng y = m cắt hai điểm phân biệt A, B cho AB = √ 1± ĐA: m = 10 (B-2004) Cho hàm số y = x3 − 2x2 + 3x (8) a) Khảo sát biến thiên vẽ đồ thị hàm số (8) b) Viết phương trình tiếp tuyến d đồ thị hàm số (8) điểm uốn Chứng minh d tiếp tuyến có hệ số góc nhỏ ĐA: y = −x + 11 (B-2004) Tìm giá trị lớn nhất, giá trị nhỏ hàm số: y = đoạn [1; e3 ] ĐA: max y = [1;e3 ] ln2 x x ; y = e2 [1;e3 ] 12 (B-2004) Tìm điều kiện tham số m để phương trình sau có nghiệm:  p p p p p m + x2 − − x2 + = − x4 + + x2 − − x2 ĐA: √ 2−1≤m≤1 13 (D-2004) Cho hàm số y = x3 − 3mx2 + 9x + (9) a) Khảo sát biến thiên vẽ đồ thị hàm số (9) m = b) Tìm m để điểm uốn đồ thị (9) thuộc đường thẳng y = x + ĐA: m = 0; ±2 14 (A-2005) Cho hàm số y = mx + x (10) a) Khảo sát biến thiên vẽ đồ thị hàm số (10) m = b) Tìm m để hàm số (10) có cực trị khoảng cách từ cực tiểu đến tiệm cận xiên √ ĐA: m = 15 (B-2005) Cho hàm số y= x2 + (m + 1)x + m + x+1 (11) a) Khảo sát biến thiên vẽ đồ thị hàm số (11) m = b) Chứng minh với giá trị m, hàm số (11) √ ln có cực đại, cực tiểu khoảng cách hai điểm 20 16 (D-2005) Cho hàm số m y = x3 − x2 + 3 (12) a) Khảo sát biến thiên vẽ đồ thị hàm số (12) m = b) Gọi M điểm thuộc đồ thị hàm số (12) có hồnh độ −1 Tìm m để tiếp tuyến đồ thị hàm số (12) M song song với đường thẳng 5x − y = ĐA: m = 17 (A-2006) Cho hàm số y = 2x3 − 9x2 + 12x − (13) a) Khảo sát biến thiên vẽ đồ thị hàm số (13) b) Tìm điều kiện tham số m để phương trình sau có nghiệm phâm biệt: 2|x|3 − 9x2 + 12|x| = m ĐA: < m < 18 (B-2006) Cho hàm số y= x2 + x − x+2 (14) a) Khảo sát biến thiên vẽ đồ thị hàm số (14) b) Viết phương trình tiếp tuyến đồ thị hàm số, biết tiếp tuyến vng góc với tiệm cận xiên √ ĐA: y = −x − ± 2 19 (B-2006) Tìm m để phương trình sau có hai nghiệm thực phân biệt p x2 + mx + = 2x + ĐA: m ≥ 20 (D-2006) Cho hàm số y = x3 − 3x + (15) a) Khảo sát biến thiên vẽ đồ thị hàm số (15) b) Gọi d đường thẳng qua A(3; 20) có hệ số góc m Tìm m để d cắt đồ thị hàm số (15) điểm phân biệt ĐA: m > 15 , m 6= 24 21 (A-2007) Cho hàm số y= x2 + 2(m + 1)x + m2 + 4m x+2 (16) a) Khảo sát biến thiên vẽ đồ thị hàm số (16) m = b) Tìm giá trị tham số m để đồ thị hàm số (16) có điểm cực đại, cực tiểu hai điểm tạo với gốc tọa độ O tam giác vuông O √ ĐA: m = −4 ± 22 (A-2007) Tìm điều kiện tham số m để phương trình sau có nghiệm: p √ √ x − + m x + = x2 − ĐA: −1 < m ≤ 23 (B-2007) Cho hàm số y = −x3 + 3x2 + 3(m2 − 1)x − 3m2 − (17) a) Khảo sát biến thiên vẽ đồ thị hàm số (17) m = b) Tìm giá trị tham số m để điểm cực đại cực tiểu hàm số cách gốc tọa độ O ĐA: m = ± 24 (D-2007) Cho hàm số y= 2x x+1 (18) a) Khảo sát biến thiên vẽ đồ thị hàm số (18) b) Tìm tọa độ điểm M thuộc đồ thị cho tiếp tuyến đồ thị M cắt hai trục toạ độ A, B cho diên tích tam giác OAB ĐA: M1   − ; −2 , M2 (1; 1) 25 (A-2008) Cho hàm số y= mx2 + (3m2 − 2)x − x + 3m (19) a) Khảo sát biến thiên vẽ đồ thị hàm số (19) m = b) Tìm giá trị tham số m để góc hai tiệm cận đồ thị 450 ĐA: m = ±1 26 (A-2008) Tìm giá trị tham số m để phương trình sau có hai nghiệm thực: √ √ √ √ 2x + 2x + − x + − x = m √ √ √ ĐA: + ≤ m < + 27 (B-2008) Cho hàm số y = 4x3 − 6x2 + (20) a) Khảo sát biến thiên vẽ đồ thị hàm số (20) b) Viết phương trình tiếp tuyến với đồ thị hàm số biết tiếp tuyến qua điểm M (−1; −9) ĐA: y = 24x + 15; y = 15 21 x− 24 28 (D-2008) Cho hàm số y = x3 − 3x2 + (21) a) Khảo sát biến thiên vẽ đồ thị hàm số (21) b) Chứng minh đường thẳng qua điểm I(1; 2) với hệ số góc k(k > −3) cắt đồ thị hàm số (21) ba điểm phân biệt I, A, B đồng thời I trung điểm AB 10 ... a) Khảo sát biến thiên vẽ đồ th? ?? hàm số (39) b) Tìm tọa độ điểm M thuộc đồ th? ?? cho tiếp tuyến đồ th? ?? M có hệ số góc ĐA: M (2; 0), M (−2; −4) 51 (2015) Khảo sát biến thiên vẽ đồ th? ?? hàm số y = x3... (3) a) Khảo sát biến thiên vẽ đồ th? ?? (C) hàm số (3) m = −1 b) Tính diện tích giới hạn đồ th? ?? (C) trục toạ độ c) Tìm điều kiện tham số m đề đồ th? ?? hàm số (3) tiếp xúc với đường th? ??ng y = x ĐA: b)S...PHÂN DẠNG ĐỀ THI ĐẠI HỌC MƠN TỐN Từ năm 2002 đến năm 2015 Hoàng Ngọc Th? ?? Ngày 20 th? ?ng năm 2015 Lời nói đầu Tài liệu nhỏ giới thiệu Đề thi ĐH mơn tốn từ năm 2002 (năm toàn quốc thi đề chung)

Ngày đăng: 17/03/2023, 16:24

w