Tài liệu tham khảo |
Loại |
Chi tiết |
[2] Blum, H. and Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with augular corners. Math. Mech. in the Appl. Sci. 2, 556-581 (1980) |
Sách, tạp chí |
Tiêu đề: |
On the boundary value problem of the biharmonic operator on domains with augular corners |
Tác giả: |
Blum, H., Rannacher, R |
Nhà XB: |
Math. Mech. in the Appl. Sci. |
Năm: |
1980 |
|
[3] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin des Sciences Math ˇ Zmatiques, 136 (2012), pp. 521-573 |
Sách, tạp chí |
Tiêu đề: |
Hitchhiker’s guide to the fractional Sobolev spaces |
Tác giả: |
E. Di Nezza, G. Palatucci, E. Valdinoci |
Nhà XB: |
Bulletin des Sciences Mathématiques |
Năm: |
2012 |
|
[4] L.C. Evans, Partial differential equations. Second edition. Graduate Studies in Mathematics.American Mathematical Society, Providence, RI, 2010. xxii+749 pp |
Sách, tạp chí |
Tiêu đề: |
Partial differential equations |
Tác giả: |
L.C. Evans |
Nhà XB: |
American Mathematical Society |
Năm: |
2010 |
|
[5] E, W., and Engquist, B. Blowup of solutions of the unsteady Prandtl’s equation. Comm. Pure Appl. Math. 50, 12 (1997), 1287–1293 |
Sách, tạp chí |
Tiêu đề: |
Blowup of solutions of the unsteady Prandtl’s equation |
Tác giả: |
E, W., Engquist, B |
Nhà XB: |
Comm. Pure Appl. Math. |
Năm: |
1997 |
|
[6] D. G´erard-Varet and E. Dormy, On the ill-posedness of the Prandtl equation, J. Amer. Math.Soc., 23 (2010), no. 2, 591–609 |
Sách, tạp chí |
Tiêu đề: |
On the ill-posedness of the Prandtl equation |
Tác giả: |
D. G´erard-Varet, E. Dormy |
Nhà XB: |
J. Amer. Math. Soc. |
Năm: |
2010 |
|
[8] E. Grenier, Y. Guo, and T. Nguyen. Spectral instability of characteristic boundary layer flows, arXiv:1406.3862 |
Sách, tạp chí |
Tiêu đề: |
Spectral instability of characteristic boundary layer flows |
Tác giả: |
E. Grenier, Y. Guo, T. Nguyen |
Năm: |
2014 |
|
[9] Y. Guo and T. Nguyen. A note on the Prandtl boundary layers. Comm. Pure Appl. Math. , 64 (2011), no. 10, 1416-1438 |
Sách, tạp chí |
Tiêu đề: |
A note on the Prandtl boundary layers |
Tác giả: |
Y. Guo, T. Nguyen |
Nhà XB: |
Comm. Pure Appl. Math. |
Năm: |
2011 |
|
[11] A. Mazzucato and M. Taylor. Vanishing viscosity plane parallel channel flow and related sin- gular perturbation problems. Anal. PDE, 1(1):35-93, 2008 |
Sách, tạp chí |
Tiêu đề: |
Vanishing viscosity plane parallel channel flow and related singular perturbation problems |
Tác giả: |
A. Mazzucato, M. Taylor |
Nhà XB: |
Anal. PDE |
Năm: |
2008 |
|
[12] Oleinik, O. A. ; Samokhin, V. N. Mathematical models in boundary layer theory. Applied Mathematics and Mathematical Computation, 15. Chapman & Hall/CRC, Boca Raton, FL, 1999. x+516 pp |
Sách, tạp chí |
Tiêu đề: |
Mathematical models in boundary layer theory |
Tác giả: |
Oleinik, O. A., Samokhin, V. N |
Nhà XB: |
Chapman & Hall/CRC |
Năm: |
1999 |
|
[14] M. Orlt and A.-M. S¨ andig, Regularity of viscous Navier-Stokes flows in nonsmooth domains.Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993), 185– |
Sách, tạp chí |
Tiêu đề: |
Regularity of viscous Navier-Stokes flows in nonsmooth domains |
Tác giả: |
M. Orlt, A.-M. S¨ andig |
Nhà XB: |
Boundary value problems and integral equations in nonsmooth domains |
Năm: |
1993 |
|
[15] M. Sammartino and R. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys.192 (1998), no. 2, 433–461 |
Sách, tạp chí |
Tiêu đề: |
Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations |
Tác giả: |
M. Sammartino, R. Caflisch |
Nhà XB: |
Comm. Math. Phys. |
Năm: |
1998 |
|
[16] M. Sammartino and R. Caflisch, Zero viscosity limit for analytic solutions, of the Navier- Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Comm. Math.Phys. 192 (1998), no. 2, 463–491 |
Sách, tạp chí |
Tiêu đề: |
Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution |
Tác giả: |
M. Sammartino, R. Caflisch |
Nhà XB: |
Comm. Math. Phys. |
Năm: |
1998 |
|
[1] A. Asano, Zero-viscosity Limit of the Incompressible Navier-Stokes Equations, Conference at the 4th Workshop on Mathematical Aspects of Fluid and Plasma dynamics, Kyoto, 1991 |
Khác |
|
[7] Grenier, E. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl.Math. 53, 9 (2000), 1067–1091 |
Khác |
|
[10] Y. Maekawa, On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane, Comm. Pure Appl. Math. 67, (2014) 1045–1128 |
Khác |
|
[13] M. Orlt, Regularity for Navier-Stokes in domains with corners, PhD Thesis, 1998 (in German) |
Khác |
|
[17] Schlichting, H and Gersten, K.: Boundary layer theory. 8th Edition, Springer-Verlag 2000 |
Khác |
|