Tài liệu tham khảo |
Loại |
Chi tiết |
1. Davis BH (2001) Fischer-Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol 71(1-3):157-166.https://doi.org/10.1016/S0378-3820(01)00144-8 |
Sách, tạp chí |
Tiêu đề: |
Fischer-Tropsch synthesis: current mechanism and futuristic needs |
Tác giả: |
Davis BH |
Nhà XB: |
Fuel Process Technol |
Năm: |
2001 |
|
5. Liu Y, Kamata H, Ohara H, Izumi Y, Ong DSW, Chang J, Poh CK, Chen L, Borgna A (2020) Low-olefin production process based on Fischer-Tropsch synthesis: process synthesis, optimization, and techno-economic analysis. Ind Eng Chem Res 59(18):8728-8739. https://doi.org/10.1021/acs.iecr.0c005426.Lee JK, Lee IB, Han J (2019) Techno-economic analysis ofmethanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making. J Ind Eng Chem 75(25):77-85. https://doi.org/10.1016/j.jiec.2019.02.019 |
Sách, tạp chí |
Tiêu đề: |
Low-olefin production process based on Fischer-Tropsch synthesis: process synthesis, optimization, and techno-economic analysis |
Tác giả: |
Liu Y, Kamata H, Ohara H, Izumi Y, Ong DSW, Chang J, Poh CK, Chen L, Borgna A |
Nhà XB: |
Ind Eng Chem Res |
Năm: |
2020 |
|
7. Zagorscak R, An N, Palange R, Green M, Krishnan M, Thomas HR (2019) Underground coal gasification-A numerical approach to study the formation of syngas and its reactive transport in the surrounding strata. Fuel 253(1):349-360. https:// doi.org/ 10.1016/j.fuel.2019.04.164 |
Sách, tạp chí |
Tiêu đề: |
Underground coal gasification-A numerical approach to study the formation of syngas and its reactive transport in the surrounding strata |
Tác giả: |
Zagorscak R, An N, Palange R, Green M, Krishnan M, Thomas HR |
Nhà XB: |
Fuel |
Năm: |
2019 |
|
8. Nakyai T, Saebea D (2019) Exergoeconomic comparison of syn- gas production from biomass, coal, and natural gas for dimethyl ether synthesis in single-step and two-step processes. J Clean Prod 241:118334. https://doi.org/10.1016/j.jclepro.2019.1183349.Gao N, Cheng M, Quan C, Zheng Y (2020) Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst. Fuel 273(1):117702.https://doi.org/10.1016/j.fuel.2020. 117702 |
Sách, tạp chí |
Tiêu đề: |
Exergoeconomic comparison of syn- gas production from biomass, coal, and natural gas for dimethyl ether synthesis in single-step and two-step processes |
Tác giả: |
Nakyai T, Saebea D |
Nhà XB: |
J Clean Prod |
Năm: |
2019 |
|
10. Elbadawi AAH, Ge L, Zhang J, Zhuang L, Liu S, Tan X, Wang S, Zhu Z (2020) Partial oxidation of methane to syngas in catalytic membrane reactor: Role of catalyst oxygen vacancies.Chem Eng J 392:123739.https://doi.org/10.1016/j.cej.2019.123739 |
Sách, tạp chí |
Tiêu đề: |
Partial oxidation of methane to syngas in catalytic membrane reactor: Role of catalyst oxygen vacancies |
Tác giả: |
Elbadawi AAH, Ge L, Zhang J, Zhuang L, Liu S, Tan X, Wang S, Zhu Z |
Nhà XB: |
Chem Eng J |
Năm: |
2020 |
|
11. Ma C, Zou C, Zhao J, Shi R, Li X, He J, Zhang X (2019) Pyrolysis characteristics of low-rank coal under a co-containing atmosphere and properties of the prepared coal chars. EnergFuel 33(7):6098- 6112.https://doi.org/10.1021/acs.energyfuels.9b00860 |
Sách, tạp chí |
Tiêu đề: |
Pyrolysis characteristics of low-rank coal under a co-containing atmosphere and properties of the prepared coal chars |
Tác giả: |
Ma C, Zou C, Zhao J, Shi R, Li X, He J, Zhang X |
Nhà XB: |
EnergFuel |
Năm: |
2019 |
|
15. Li L, Chen J, Zhang Q, Yang Z, Sun Y, Zou G (2020) Methane dry reforming over activated carbon supported Ni-catalysts prepared by solid phase synthesis. J Clean Prod 274:122256.https://doi. org/10.1016/j.jclepro.2020.122256 |
Sách, tạp chí |
Tiêu đề: |
Methane dry reforming over activated carbon supported Ni-catalysts prepared by solid phase synthesis |
Tác giả: |
Li L, Chen J, Zhang Q, Yang Z, Sun Y, Zou G |
Nhà XB: |
J Clean Prod |
Năm: |
2020 |
|
16. Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane:Analysis review. Renew Sustain Energy Rev 82(3):2570-2585.https://doi. org/10.1016/j.rser.2017.09.076 |
Sách, tạp chí |
Tiêu đề: |
Catalyst design for dry reforming of methane:Analysis review |
Tác giả: |
Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN |
Nhà XB: |
Renew Sustain Energy Rev |
Năm: |
2018 |
|
17. Pakhare D, Spivey J (2014) A review of dry (CO 2 ) reforming of methane over noble metal catalysts. Chem Soc Rev 43(22):7813- 7837. https://doi.org/10.1039/C3CS60395D18. Park JH, Yeo S, Kang TJ, Heo I, Lee KY, Chang TS (2018)Enhanced stability of Co catalysts supported on phosphorus- modified Al 2 O 3 for dry reforming of CH 4 . Fuel 212(15):77-87.https://doi.org/10.1016/j.fuel.2017.09.090 |
Sách, tạp chí |
Tiêu đề: |
A review of dry (CO 2 ) reforming of methane over noble metal catalysts |
Tác giả: |
Pakhare D, Spivey J |
Nhà XB: |
Chem Soc Rev |
Năm: |
2014 |
|
19. Paksoy AI, Caglayan BS, Aksoylu AE (2015) A study on characterization and methane dry reforming performance of Co- Ce/ZrO 2 catalyst. Appl Catal B 168:164-174. https://doi.org/10.1016/j. apcatb.2014.12.038 |
Sách, tạp chí |
Tiêu đề: |
A study on characterization and methane dry reforming performance of Co- Ce/ZrO 2 catalyst |
Tác giả: |
Paksoy AI, Caglayan BS, Aksoylu AE |
Nhà XB: |
Appl Catal B |
Năm: |
2015 |
|
20. Horváth É, Baán K, Varga E, Oszkó A, Vágó Á, Toro M, Erdohelyi A (2017) Dry reforming of CH 4 on Co/Al 2 O 3 catalysts reduced at different temperatures. Catal Today 281(2):233-240.https://doi. org/10.1016/j.cattod.2016.04.007 |
Sách, tạp chí |
Tiêu đề: |
Dry reforming of CH 4 on Co/Al 2 O 3 catalysts reduced at different temperatures |
Tác giả: |
Horváth É, Baán K, Varga E, Oszkó A, Vágó Á, Toro M, Erdohelyi A |
Nhà XB: |
Catal Today |
Năm: |
2017 |
|
21. Zeng S, Zhang L, Zhang X, Wang Y, Pan H, Su H (2012) Modification effect of natural mixed rare earths on Co/y-Al 2 O 3catalysts for CH 4 /CO 2 reforming to synthesis gas. Int J HydrogEnergy 37(13): 4 9994 2 -10001.https://doi.org/10.1016/j.ijhydene.2012.04. 014 |
Sách, tạp chí |
Tiêu đề: |
Modification effect of natural mixed rare earths on Co/y-Al 2 O 3catalysts for CH 4 /CO 2 reforming to synthesis gas |
Tác giả: |
Zeng S, Zhang L, Zhang X, Wang Y, Pan H, Su H |
Nhà XB: |
Int J Hydrog Energy |
Năm: |
2012 |
|
22. Shafiqah MNN, Tran HN, Nguyen TD, Pham TTP, Abdullah B, Lam SS, Nguyen-Tri P, Kumar R, Nanda S, Vo DVN (2020) Ethanol CO 2 reforming on La 2 O 3 and CeO 2 -promoted Cu/Al 2 O 3catalysts for enhanced hydrogen production. Int J HydrogEnergy 45(36):18398-18410.https://doi.org/10.1016/j.ijhydene.2019.10. 024 |
Sách, tạp chí |
Tiêu đề: |
Ethanol CO 2 reforming on La 2 O 3 and CeO 2 -promoted Cu/Al 2 O 3 catalysts for enhanced hydrogen production |
Tác giả: |
Shafiqah MNN, Tran HN, Nguyen TD, Pham TTP, Abdullah B, Lam SS, Nguyen-Tri P, Kumar R, Nanda S, Vo DVN |
Nhà XB: |
Int J Hydrog Energy |
Năm: |
2020 |
|
23. Tran NT, Pham TLM, Nguyen TD, Van Cuong N, Siang TJ, Phuong PTT, Jalil AA, Truong QD, Abidin SZ, Hagos FY, Nanda S, Vo DVN (2020) Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous alumina- supported cobalt nanocatalyst. Int JHydrog Energy. In press.https://doi.org/10.1016/j.ijhydene.2020.06.142 |
Sách, tạp chí |
Tiêu đề: |
Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous alumina- supported cobalt nanocatalyst |
Tác giả: |
Tran NT, Pham TLM, Nguyen TD, Van Cuong N, Siang TJ, Phuong PTT, Jalil AA, Truong QD, Abidin SZ, Hagos FY, Nanda S, Vo DVN |
Nhà XB: |
Int JHydrog Energy |
Năm: |
2020 |
|
26. Fayaz F, Nga NTA, Pham TLM, Danh HT, Abdullah B, Seti- abudi HD, Vo DVN (2018) Hydrogen production from ethanol dry reforming over lanthania-promoted Co/Al 2 O 3 catalyst. IIUM Eng J 19(1): 24-33. https://doi.org/ https:// doi.org/ 10.31436/iiumej. v19i1.813 |
Sách, tạp chí |
Tiêu đề: |
Hydrogen production from ethanol dry reforming over lanthania-promoted Co/Al 2 O 3 catalyst |
Tác giả: |
Fayaz F, Nga NTA, Pham TLM, Danh HT, Abdullah B, Seti-abudi HD, Vo DVN |
Nhà XB: |
IIUM Eng J |
Năm: |
2018 |
|
12. Yang Q, Li X, Yang Q, Huang W, Yu P, Zhang D (2019) Oppor- tunities for CO 2 utilization in coal to green fuel process: Opti- mal design and performance evaluation. ACS Sustain Chem Eng 8(3):1329-1342.https://doi.org/10.1021/acssuschemeng.9b02979 |
Link |
|
13. Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L, Christopher P, Carter EA, Nordlander P, Halas NJ (2020) Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat Energy 5(1):61-70. https://doi.org/10.1038/s41560-019-0517-9 |
Link |
|
14. Safavinia B, Wang Y, Jiang C, Roman C, Darapaneni P, Lar- riviere J, Cullen DA, Dooley KM, Dorman JA (2020) Enhancing Ce x Zr 1-x O 2 activity for methane dry reforming using subsurface Ni x dop 1 a -x nts. 2 ACS Catal 10(7):4070-4079.https://doi.org/10.1021/ acscatal.0c00203 |
Link |
|
34. Osorio-Vargas P, Campos CH, Navarro RM, Fierro JLG, Reyes P (2015) Rh/Al 2 O 3 -La 2 O 3 catalysts promoted with CeO 2 for ethanol steam reforming reaction. J Mol Catal A Chem 407:169- 181. https://doi.org/10.1016/j.molcata.2015.06.031 |
Link |
|
37. Milt VG, Ulla MA, Lombardo EA (2000) Cobalt-containing catalysts for the high-temperature combustion of methane. Catal Lett 65(1-3):67-73. https://doi.org/10.1023/A:101906110387838. San José-Alonso D, Illán-Gómez MJ, Román-Martínez MC |
Link |
|